
Global Illumination Rendering

With Monte Carlo Ray-tracing

Per Bl̊awiik, Anneli Nilsson

Department of Science and Technology
Linköping University

2019-12-15

Keyword: Global Illumination, Monte Carlo Ray-tracing.

Abstract: This report describes the methods used to
implement an advanced global illumination renderer using
Monte Carlo ray-tracing and integration. The aim of the
renderer is to provide a photorealistic image. The renderer uses
direct, indirect and specular light simulation defined by the
rendering equation, Whitted ray-tracing and Monte Carlo
integration. The scene that was used to render images had
implicit objects, spheres, and polygonal objects with Lambertian
and Oren-Nayar material properties. There were also perfect
mirror objects and one transparent, that uses the Fresnel
equations. To determine when the light hits an object ray
intersections are calculated, for triangles the Möller-Trumbore
algorithm is used and the sphere intersection uses its geometry
to determine intersections. Anti-aliasing is taken into
consideration in this implementation, and is solved with
supersampling and randomization. The result is a renderer
based on global illumination techniques and unbiased schemes
such as russian roulette and importance sampling. Given endless
rendering time and samples, the rendered images converges to
photorealism. Monte Carlo ray-tracing will always contain more
or less noise based on the number of samples used.

1. Introduction

When recreating an image digitally one often strive for photorealism. Photo-
realism, in computer graphics, is a concept describing the phenomena when
the image quality converges to an accurate and correct representation with
increasing computer power, with the given specific methods. To achieve pho-
torealism in a computer generated scene, one needs to implement a global
illumination model. There are various techniques to simulate global illu-
mination with different level of complexity. The implementation of global
illumination is, however, a processing and memory expensive task which de-
pends on how the implementation is done. The purpose of this report is to
describe the implementation of a global illumination renderer using Monte
Carlo ray-tracing and Whitted ray-tracing, in a scene containing different
objects with various material properties.

1.1. Aim

The aim of this study is to use the mathematical equations and theories to
implement a global illumination renderer with Monte Carlo ray-tracing and
integration.

1.2. Global Illumination

The concept of global illumination consists of a number of components that
are accounted for when illuminating a 3D-environment. These components
are: direct illumination, indirect illumination and specular reflections. These
types of illumination distribute flux, or light, across the entire scene in various
ways from a light source. While a infinitesimal small area of flux is called
radiance.

• Direct illumination is the flux that only bounce once in the scene
after being emitted from the light source and then hits the view point.

• Indirect illumination is when flux from a light source bounce more
than once in the scene and then hits the view point. In other words,
indirect light is the refracted and reflected light.

• Specular reflection is light that has been perfectly reflected off a
glossy surface.

2

Shadows are also a part of global illumination as well as caustics. Caustics
are defined as concentrated flux in a specific area that has been refracted
through a surface. However, caustics cannot be accurately represented by
just Monte Carlo ray-tracing because it would produce a noisy result.

1.2.1. Implementation of Global Illumination

The major steps of implementing a global illumination are the following: de-
fine material properties and objects, light transportation and visual display.
The first step is to generate the geometric environment of the scene, such as
the room and any possible objects within it, and all the material properties
of their surfaces. Examples of material properties can be transparency, color
and reflectivity. The light sources are also defined in this step.

The second step is to calculate the light distribution in the scene by using
the information about the light sources and surfaces. This step will result in
radiometric values in the soon to be image plane, where radiometry is a kind
of light energy. The third and the last step is to convert these radiometric
values into pixel color.

2. Theoretical Foundation and Algorithms

In this section, all relevant techniques for the implementation of a Monte
Carlo based global illumination renderer is explained.

2.1. Whitted Ray-tracing

The basic concept of ray-tracing is to follow a ray from the view point (camera
position), through each pixel of the viewport image, into a 3D environment.
If a ray intersects with a surface of an object, the radiance of the point is
computed by casting a shadow ray towards all light sources (see Figure 1). If
the surface material is specular, the ray is reflected and continues to bounce
through the scene until it hits a diffuse surface or is terminated by a specified
condition. The final pixel radiance is computed by summing up the radiance
for each intersection point in the ray path. This recursive nature of including
indirect light is known as Whitted ray-tracing [1]. More concretely, Whitted
Ray-tracing recursively structures reflections and refractions from a ray into
a tree structure, starting from each pixel.

3

Figure 1: The path of the ray is visualized by the blue line and starts from
the camera. For each surface intersection, a shadow ray is cast towards the
light source. If the shadow ray intersects with another object before it hits
the light source, the surface point lays in shadow.

2.2. Ray Intersection Test

When rays are projected into the scene, the rays will intersect with different
objects. In this project two types of intersection are computed, the triangle
and sphere intersection, because the spheres in the scene are implicit objects
and the rest of the scene is made out of triangles.

2.2.1. Triangle Intersection

The majority of the scene contains triangles and to detect a ray intersection a
formula called the Möller-Trumbore algorithm [2] is used. The definition of a
ray R(t) is seen in (1), O it the ray origin, normalized in the direction D and
the vector t contains the intersection’s distance and its (u, v) coordinates.
Also, note that each triangle is described by three vertices V0, V1 and V2.

R(t) = O + tD (1)

The point T (u, v) on a triangle is given by (2).

4

T (u, v) = (1− u− v)V0 + uV1 + vV2 (2)

The coordinates (u, v) are barycentric and must fulfill the conditions u ≥ 0,
v ≥ 0 and u+ v ≤ 1. To find out if a ray is intersecting a triangle one needs
to combine (1) and (2) that will result in (3).

[−D, V1 − V0, V2 − V0]

tu
v

 = O − V0 (3)

The equation can be solved with Cramer’s rule and will result in (4), where
E1 = V1 − V0, E2 = V2 − V0, T = O − V0, P = D × E2 and Q = T × E1.tu

v

 =
1

PE1

QE2

PT
QD

 (4)

2.2.2. Sphere Intersection

The surface detection when a ray collides with a sphere is calculate differ-
ently compared to a triangle, because a sphere is defined implicitly in the
implementation. In other words a sphere only contains information about
its center point and radius. The intersection detection is derived from (5),
where x represents a sphere surface point, c is the sphere center and r is the
sphere radius.

||x− c||2 = r2 (5)

The term x is given by (6) where o is the starting point of a ray together
with the normalized direction l. The factor d is a point x on the ray.

x = o + dl (6)

d can be calculated by using (6) in (5), which will result in (7).

d = −2l(o− c)

2
±

√(
2l(o− c)

2

)2

− ((o− c)2 − r2) (7)

5

2.3. Rendering Equation

The general idea of a global illumination renderer is derived from the formula
shown in (8) [3].

L(x← ω) = Le(x← ω) +

∫
ω1

f ∗(x1,−ω, ω1)L(x1 ← ω1)dω1 (8)

The term L(x ← ω), or L(x1 ← ω1), is the radiance that arrives at a point
x (x1) from the direction ω (ω1), while Le denotes the radiance emitted by
the light source that arrives at x from the direction ω. f ∗(x1,−ω, ω1) is the
fraction of reflected radiance from the surface point x1 from a direction ω1

into the direction −ω. f ∗ also depends on two factors, the material property
(fr) and a geometric factor (9). The inclination angle θ1 is the angle between
the normal at x1 and ω1.

f ∗(x1,−ω, ω1) = fr(x1,−ω, ω1)cosθ1 (9)

The rendering equation is, however, defined as an integral and it is not pos-
sible to make a rendered image with just this. The solution is to use a
numerical interpretation of the formula, like Monte Carlo ray-tracing.

2.4. Fresnel Equation

There are specific equations called Fresnel equations that calculate the ratio
between refracted and reflected light, this applies only to smooth transparent
objects. The Fresnel equations utilize Snell’s equation for refraction where
θ1 is the incident angle of the incoming ray. n1 and n2 are the respective
media’s refractive index. Equations (10) and (11) describe the perpendicular
and parallel components of polarized light [3].

Rs =

(
n1cosθ1 − n2

√
1− ([n1/n2]sinθ1)2

n1cosθ1 + n2

√
1− ([n1/n2]sinθ1)2

)2

(10)

Rp =

(
n1

√
1− ([n1/n2]sinθ1)2 − n2cosθ1

n1

√
1− ([n1/n2]sinθ1)2 + n2cosθ1

)2

(11)

The coefficient of total reflection (12) is a combination of Rs and Rp, while
T = 1−R denotes the transmitted amount of radiance.

R =
Rs +Rp

2
(12)

6

2.5. Bidirectional Reflectance Distribution Function
There are a couple different types of surfaces in the scene that were used
that were defined in different ways. The diffuse surfaces in the scene were
either defined as a Lambertian or Oren-Nayar surfaces. Other surfaces are
perfectly reflective (mirrors) or transparent. The case when a surface is a
perfect mirror, implies that the radiance is left unchanged when it hits the
surface and then bounces away. Transparent surfaces reflect part of the
incoming ray and let the other part pass, or refract, through the surface.

Lambertian and Oren-Nayar models are examples of Bidirectional Reflectance
Distribution Function, even referred as BRDF. Lambertian surfaces have a
uniform distribution of radiance giving a smooth result, while Oren-Nayar
simulate a rough surface, see Figure 2.

Figure 2: Comparisons between a real image, Lambertian and Oren-Nayar
surfaces. [4]

In the Lambertian model (13) the direction of the incoming and outgoing
rays have no influence on the light distribution on the surface. The BRDF
in this case only have a constant reflection coefficient ρ in the interval [0, 1],
which is normalized with π.

fr =
ρ

π
(13)

Oren-Nayar reflectors can simulate rough surfaces more accurately than the
Lambertian model, because the surface is structured with V-shaped micro-
facets that results in a visualization of a rough surface [4]. The model has
Guassian distribution of the microfacets’ angle orientation and is defined in
(14). φin, θin, φout and θout are the directions of the incoming and outgoing
rays, while α and β are defined as α = max(θin, θout) and β = min(θin, θout).

fr(x, ωin, ωout) =
ρ

π
(A+Bmax(0, cos(φin − φout))sinαsinβ) (14)

7

The constants A and B are calculated with (15), where σ represents the
standard deviation of the Gaussian.

A = 1− σ2

2(σ2 + 0.33)
, B =

0.45σ2

σ2 + 0.09
(15)

2.6. Monte Carlo Integration

The implemented renderer presented in this paper is predominantly based
on the Monte Carlo integration technique Importance Sampling. Monte
Carlo integration applies a non-deterministic approach, meaning that the in-
tegrated outcome is an approximation of the correct value reached by picking
random points based on the definition of the integrated function. By picking
an infinite amount of random points (samples), the integration will converge
to the correct value. This is the main motivation for using the method: the
random points result in an unbiased final value which contributes to photo-
realism.

In the case of applying the Monte Carlo method with the Whitted ray-tracing
scheme described in section 2.1, each ray-intersection on a diffuse surface
casts N number of sample rays to collect incoming radiance (or outgoing
importance), see Figure 3.

Figure 3: An illustration of the incoming radiance/outgoing importance for
all diffuse intersection points. The rays are randomly sampled over the entire
hemisphere.

The estimator for the Monte Carlo sampling is given by equation (16):

< EP >=
1

N

N∑
i=1

f(Xi)

p(Xi)
, (16)

8

where f(Xi) is the function to integrate (total amount of radiance on in-
tersection point P), p(Xi) is the probability distribution function (PDF) for
the hemisphere, N is the number of random samples and Xi is the random
variable (e.g. random point on the hemisphere).

In this case, the PDF p is constant since all sample rays have the same
probability of being generated. Since the solid angle of a hemisphere is given
by 2π, an integration of the constant p over the hemispheres give the solution:∫ 2π

ω

pdω = p(2π − 0) = 1⇔ p =
1

2π
(17)

2.6.1. Importance Sampling

The main idea of importance sampling is to generate more samples where the
integrated function is important, which leads to lower variance. This trans-
lates to: generate samples where the integrated function is similar to the PDF
(important samples). This technique greatly reduces the noise compared to
uniformly distributed sampling. In practise it means that the samples are
generated based on the PDF.

Start by expressing the solid angle for the hemisphere in polar coordinates:
dω = sin θdθdφ, where θ is the inclination angle, φ is the azimuth angle and
dω = 2π according to equation (17). The PDFs for θ and φ are then given
by:

p(θ) = sinθ, p(φ) =
1

2π

By inverting the cumulative distribution functions (CDF) of the above PDFs
the randomly generated inclination angles θ and azimuth angles φ are given
by equation (18) and (19):

θ = arccos(1− r), (18)

φ = r ∗ 2π, (19)

where r ∈ [0, 1] is a uniformly distributed random number. The final step is
to simply transform the generated direction to the world coordinate system.

2.6.2. Russian Roulette

To terminate the recursion of the Monte Carlo sampled rays, an unbiased
method is required for maintaining the photorealism. This is solved by a

9

technique called Russian Roulette, where the rays are randomly terminated
based on an absorption probability α of a surface point. First, generate a
random number r ∈ [0, 1], then, if r > 1 − α the ray is terminated. To
account for the reduced importance, the BRDF function ρ is divided by the
probability of a ray not being terminated.

2.7. Anti-Aliasing and Supersampling

The mathematical descriptions of the geometries in the scene are continues.
If a limited amount of rays are cast through a limited amount of pixels to
describe a continues line, the effect of aliasing will occur (depending on the
level of detail). If only one ray is emitted per pixel, the aliasing is primarily
reduced by increasing the resolution (adding more pixels). This is only pos-
sible to an extent and therefore a technique called supersampling is used to
divide each pixel into smaller sub-pixels (simulating higher resolution). The
average value of the sub-pixels are then used to describe the real pixel, see
Figure 4.

Figure 4: To the left is four ordinary pixels with one ray (black dot) through
each pixel. To the right, each of the four pixels on the left has been subdivided
into 16 sub-pixels. This technique simulates higher resolution by averaging
the sub-pixels into one.

Another available method is to smooth out sharp edges by emitting each of
the rays in different pseudo-random directions. This method is called ray
randomization and is illustrated in Figure 5. Just as for supersampling, all
random samples are being averaged to represent the real pixel.

10

Figure 5: To the left is four ordinary pixels with one ray (black dot) through
each pixel. To the right, each of the four pixels has been sampled into 16
random ray directions.

Naturally the best result is yielded by combining the two methods since the
supersampling is still becoming aliased for certain cases and the random rays
could end up being distributed unevenly.

3. Result and Discussion

The implemented Monte Carlo ray-tracing renderer is based on the theory
presented in previous sections of the paper and will converge to a photoreal-
istic image if using unlimited rendering time (infinite number of samples). In
this section, certain visual effects on rendered images will be presented and
discussed.

3.1. Rendering Result

The final scene (see Figure 6) is rendered in the resolution 1024x768 pixels,
using 512 samples per pixel with randomized directions within each pixel.
The only light source in the scene is a white rectangle area light. Maximum
number of ray bounces were set to 7 to prevent never ending mirror loops.
The spheres are implicit objects and the rest are polygonal objects. The
walls, ceiling and floor are using diffuse Lambertian surfaces and the white
sphere has a diffuse Oren-Nayar surface. There are two perfectly reflective
surfaces: a tetrahedron and a sphere. The last sphere has a fully transparent
surface similar to the material of glass. The renderer utilizes OpenMP[5] for
parallel computations to decrease the rendering time.

11

Figure 6: Scene rendered with Monte Carlo ray-tracing using 512 samples
per pixel and Russian roulette for terminating rays. Rendering time: 143
min.

3.1.1. Reflection and Refraction

A zoomed in view of the sphere with a reflective surface from Figure 6, can
be seen in Figure 7a. The surface is perfectly reflective and shows parts of
the room that is not visible from the original view. We can also see the
refractive effect of the fully transparent sphere, through the same reflection.
This is an outcome of the recursion used in the path tracing. Light refraction
in the transparent sphere is more clearly seen in Figure 7b. We can even see
the shadow of the white sphere on the yellow wall through refracted light.
As explained in section 2.4, a part of the light on a transparent object is
reflected. This effect creates a vague reflection of the light source in the
ceiling as well as the white sphere, as seen in Figure 7b.

12

(a) Perfect reflective material. (b) Transparent material.

Figure 7: Objects with perfect reflective material and transparent material.

3.1.2. Color Bleeding

The white sphere with the Oren-Nayar BRDF in Figure 8 shows the effect of
color bleeding. This is possible since the path tracing is recursive and each
recursion uses Monte Carlo sampling to collect incoming radiance. If a white
surface point is close to a e.g. red object, a large amount of the incoming
rays will contribute to the color red (indirect illumination).

Figure 8: Sphere with a diffuse material showing the effects of color bleeding
in the scene.

3.2. Noise

The implementation of the Monte Carlo algorithm in this project produce
noise in the render result. The amount of noise depends on how many samples
are used to render the image, as seen i Figure 9 with 64 samples which is

13

eight times less than the final rendering in Figure 6. As explained in section
2.6, in a real application where the number of samples are limited, the result
will never be entirely noise free. However, with a large enough amount of
samples, the noise will barely be noticeable. Most importantly, in the end
the noise hides artifacts and is unbiased which contributes to maintaining
photorealism.

Figure 9: Render of the scene with 64 samples and resolution 512x512 pixels.

3.3. Further Implementation

The implementation of the global illumination renderer can be improved
by adding methods to calculate caustics in the scene, which would improve
the result of transparent objects when light travels through them. The im-
plementation of caustics can be done with photon mapping, which needs a
kd-tree structure to store the photons emitted into the scene. Photon map-
ping would also improve the rendering time, because it reduces the number
of shadow rays and therefore less calculation needed to be done.

14

4. Conclusion

The projects purpose was to implement a global illumination renderer and
render a scene with an area light source, implicit and polygonal objects with
Lambertian and Oren-Nayar surface BRDFs, perfect mirrors and a trans-
parent object. The renderer uses relevant equations to create an adequate
photorealistic image. The Monte Carlo technique renders an image that will
always contain noise, however humans have a tendency to ignore it if the
amount is relatively small.

15

References

[1] Whitted JT. An Improved Illumination Model for Shaded Display.
Graphics and Image Processing. 1979;.

[2] Möller T, Trumbore B. Fast, Minimum Storage Ray-Triangle Intersection.
SIGGRAPH. 2005;.

[3] Dutré P, Bala K, Bekaert P. Advanced global illumination, second edition;
2006.

[4] Oren M, Nayar SK. Generalization of Lambert’s Reflectance Model. SIG-
GRAPH. 1994;.

[5] OpenMP - The OpenMP API specification for parallel program-
ming;Available from: https://www.openmp.org/.

16

