
TNM095 - Artificial Intelligence for Interactive Media
February 8, 2021

Self-Learning Drone Navigation Using Deep
Reinforcement Learning
Per Blåwiik1

Abstract
This report covers the theory and the implementation of training an AI-agent to navigate a quad-copter drone
through an obstacle course. The drone and the course is represented in a virtual 3D environment and the
agent was trained using deep reinforcement learning methods. A curriculum learning strategy was utilized to
accelerate and optimize the training by dividing it into several lessons that gradually becomes more complex.
The proximal policy optimization algorithm together with a curriculum strategy containing six difficulty levels was
implemented to successfully train the agent to consistently solve the specified problem. The results indicate
that the environment can be further developed by simply adding more difficulty levels to the curriculum strategy,
letting the agent resume its training from where it ended.
Source code: https://github.com/perblawiik/drone-ai

Video: https://www.youtube.com/watch?v=WaMEi7R5w8Y
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1. Introduction
The aim of the project presented in this report was to train an
AI-agent to navigate a quad-copter drone through an obstacle
course while performing a simple task, using reinforcement
learning methods. The drone is a coarsely simplified model
based on a remote controlled quad-copter and the course is
represented by a virtual 3D environment.

The reinforcement learning method chosen to train the
AI-agent is called proximal policy optimization (PPO), first
introduced by the OpenAI research team Schulman et al. [1] in
2017. The PPO algorithm is one of the most popular and effi-
cient reinforcement learning approaches for training AI-agents
to solve tasks in game-like environments as well as control
problems in the field of robotics. PPO is an on-policy algo-
rithm which can be used in environments with both discrete
and continuous action spaces, and supports parallelization for
accelerated training.

To increase the efficiency and optimization of the training,
a curriculum learning strategy was also implemented. The
idea of curriculum learning is to break down a complex task
into several lessons, which gradually becomes more advanced.

This report first covers the theory behind reinforcement
learning, PPO and curriculum learning, followed by the details
specific to the implementation of the project. The results are
then presented together with training statistics, and finally, the
report is concluded with a discussion and conclusion of the
work.
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2. Theory

In this section, the theoretical foundation of the project is
presented, including an introduction to reinforcement learning,
and the theory behind proximal policy optimization (PPO)
algorithm as well as the curriculum learning strategy.

2.1 Reinforcement Learning
The idea of reinforcement learning is to program (train) an
agent to solve a task by using positive and negative rewards,
without specifying any details on how to do it. The standard
form of reinforcement learning applied in the field of artifi-
cial intelligence, involves an agent that is connected to an
environment via observations and actions [2].

Observations are the agent’s perception of the environ-
ment, which can range between partial knowledge received
from specific sensors, to full knowledge of everything. The
observations are used to represent the state of the environment.

Via action inputs, the agent can interact with the envi-
ronment. Each action input changes the current state of the
environment and generates a new state as output. Depending
on the output, the agent usually receives a positive or negative
reward (reinforcement), which can be saved in the agent’s
memory for future exploitation. On the long run, the agent’s
behaviour should converge to selecting actions that tend to
yield the highest sum of rewards.

An important part of the reinforcement learning model
is the exploitation versus exploration ratio. The exploration
part of the agent’s brain is based on random actions, while the
exploitation part utilizes the memory of previous experiences
to choose actions. In order for the agent to discover which
behaviour give the highest reward, the environment must be
explored, and thus, random actions are necessary. However,
since the goal is to train the agent to predict the best actions
to solve a task, the exploration ratio should decrease on the
long run.

How to exactly manage the trade-off between exploration
and exploitation is not trivial, and testing is usually required
to find the best configuration. For example, if the exploration
is removed too early during the training, the agent might
learn a sub-optimal strategy since it never discovered a more
favorably sum of rewards.

2.2 Proximal Policy Optimization
Proximal policy optimization (PPO), proposed by Schulman
et al. [1], is a novel reinforcement learning algorithm based on
policy gradient methods [3]. The biggest advantages of PPO
over standard policy gradient methods are better performance,
regarding computational complexity, and it is significantly
simpler to implement.

The main idea behind PPO is to make the biggest possible
improvement on a decision-making policy using the currently
available data, without causing a performance collapse. In
practise, the method can be crudely explained by the following
steps:

1. An agent collects a small batch (multiple time steps) of
experiences by interacting with the environment.

2. The collected batch is then used to update the decision-
making policy.

3. Every time the policy is updated, the collected batch is
discarded.

4. Collect a new batch of experiences using the updated
policy.

Note that each batch of experiences is only used to update
the current decision-making policy once.

2.2.1 Clipped Surrogate Objective
To avoid making too large updates, which can cause the new
policy to diverge far away from the old, a clipping method is
normally used (alternatively, a penalty variant similar to trust
region policy optimization (TRPO) [4] is used). The clipping
yields less variance to ensure a more stable training, at the
cost of minor biases.

Using the clipping approach, the policies π are updated
by collecting minibatches (multiple steps) of SGD (stochastic
gradient descent) to maximize the objective θ according to
Equation 1.

θk+1 = maximize
θ

Êt [L(s,a,θk,θ)], (1)

where the k subscript denotes the old minibatch, s is the cur-
rent state, a is the action, Ê indicates the empirical average
over the batch samples, and L is the surrogate objective given
by Equation 2.

L(s,a,θk,θ)=min
(

πθ (a|s)
πθk(a|s)

Aπθk (s,a),g(ε,Aπθk (s,a)
)
, (2)

where A is the advantage function of the action-state pair, ε is
a hyperparameter that influences how far away the new policy
can diverge from the old policy (the clipping threshold), and
the function g is defined by Equation 3.

g(ε,A) =

{
(1+ ε)A, if A≥ 0
(1− ε)A, if A < 0

(3)

Equation 2 looks complex, but if the advantage A is posi-
tive, the expression reduces to Equation 4, and if A is negative,
it reduces to Equation 5. The term πθ (a|s)

πθk
(a|s) is a ratio that mea-

sures the difference between the old policy πθk and the new
policy πθ .

L(s,a,θk,θ) = min
(

πθ (a|s)
πθk(a|s)

,(1+ ε)
)

Aπθk (s,a) (4)
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L(s,a,θk,θ) = max
(

πθ (a|s)
πθk(a|s)

,(1− ε)
)

Aπθk (s,a) (5)

The intuition of Equation 4 is, that the objective will in-
crease if πθ (a|s) increases (an action becomes more likely),
but the term is clipped to (1+ ε)Aπθk (s,a). In Equation 5,
the objective will increase if πθ (a|s) decreases (an action be-
comes less likely), but the term is clipped to (1− ε)Aπθk (s,a).
Thus, the new policies do not diverge too far away from the
old policies, by clamping the objective value in the interval
[(1− ε)A,(1+ ε)A].

2.2.2 The Actor-Critic Model
The PPO uses an Actor-Critic approach, which involves an ac-
tor model and a critic model, when training the agent. Briefly
explained, the actor model learns to predict what action to
choose for the currently observed state, while the critic model
learns to evaluate the outcome of the actions taken (in terms
of positive or negative rewards) and returns the feedback to
the actor.

The PPO algorithm proposed by Schulman et al. [1], us-
ing N parallel actors for each iteration, collecting data of T
timesteps, is shown below. The surrogate L with respect to the
objective θ is optimized using minibatch SGD for K epochs.

Algorithm 1: PPO, Actor-Critic Style

for iteration=1, 2, ... do
for iteration=1, 2, ..., N do

Run policy πold in environment for T steps;
Compute advantage estimates Â1, ..., ÂT ;

end
Optimize surrogate L wrt the objective θ , with K

epochs and minibatch size M ≤ NT ;
Update previous objective θold ← θ ;

end

2.3 Curriculum Learning
A big problem in reinforcement learning is the amount of train-
ing time needed for solving tasks of high complexity. Since
reinforcement learning is widely based on random exploration,
some challenges can be daunting or practically impossible for
a self learning agent to overcome.

Curriculum learning proposed by Bengio et al. [5], is
a strategy for accelerating the training process by gradually
increasing the complexity based on the learning progress of,
in the case of reinforcement learning, the AI agent. The main
goal is to find better local minimas as well as finding a faster
convergence.

Just like how children first learns the basics before mov-
ing on to more advanced material during elementary school,
curriculum learning applied in machine learning algorithms
first introduces a simple problem for the model to solve and

gradually increases the complexity. This way, previously en-
countered concepts can be utilized to ease the learning curve
when facing new challenges.

The curriculum learning strategies defined by Bengio et
al. [5], leave most of the work to the teacher. The key as-
pect in designing curriculum strategies is to recognise how
the problem should be subdivided into lessons and how the
knowledge to solve one problem can benefit the learning of
solving another.

3. Method
In this section, the details on the implementation of the project
is covered. First the environment is explained, followed by
the drone controls, observation system, reward system, and
the curriculum learning strategy.

The proximal policy optimization method was implemented
using the Unity integrated library called ML-Agents, which
includes a ready-to-use template that contains all necessary
parts of the algorithm, as well as a configuration system for
setting the training parameters. This library was mainly used
to facilitate the construction of a customized 3D environment
using the game engine Unity. ML-Agents also supports auto-
mated curriculum learning which means that the environment
can automatically change during training based on specified
threshold values.

3.1 The Environment
The goal of the project was to train an agent to navigate a quad-
copter drone through an obstacle course while performing a
simple task. When designing the environment, the learning
goal of the agent was divided into several sub-goals:

• Learn to gain height

• Learn to leave the starting area and land in a goal area.

• Learn to avoid obstacles.

• Learn to adapt the flight path based on the environment.

• Learn to perform a task.

To encourage the agent to keep the drone in the air, the
start and goal areas consist of cylindrical platforms reaching
far from the ground level. This results in that the drone is
airborne immediately after leaving the starting area. Since
there is nowhere else to land except for the goal platform after
leaving the start platform, both platforms are distinguished
from the rest of the environment.

The entire obstacle course is contained inside four walls to
force the agent to be aware of its surroundings. Additionally,
a large wall with a small opening separates the start and the
goal so that the drone has to be carefully navigated through
it. The four walls and the center wall is the obstacles that the
agent needs to learn to avoid while navigating the drone.

The task to solve in the environment was represented by a
floating sphere checkpoint that needs to be collected before
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landing in the goal area. This task forces the agent to search
the environment while navigating through obstacles on the
way to the goal area.

Finally a randomization system was implemented to ran-
domize the positions of the start and end platforms, the posi-
tion of the wall gap, and the position of the checkpoint. Thus,
each training episode is unique, which forces the agent to
adapt its flight path based on observations of the environment.

3.2 Actions
In order for the agent to explore and interact with the environ-
ment, a set of available input actions are necessary.

The quad-copter drone is represented by a rigid body and
is moved by forces applied to it. The idea is that the agent
controls the drone with a calibrated remote controller device
like a human would. For example, this means that the height
is computed by a simple PID controller system so that the
agent only needs to be concerned about the control inputs (not
the actual forces involved). The height u(t) is computed based
on the control function given by Equation 6 [6].

u(t) = KP · e(t)+KI ·
∫ t

0
e(τ)dτ +KD ·

de(t)
dt

(6)

where Kp is the proportional gain, KI is the integral gain,
KD is the derivative gain, e is the error signal (the difference
between desired height and measured height), τ is variable of
integration, and t is the time input.

To make the training easier for the agent, the drone con-
trols are limited to five inputs: move vertically up or down,
rotate left or right, and move straight forward.

3.3 Observations and Sensors
Some form of observation system is needed in order for the
agent to perceive the environment and make decisions based
on the current states. To make observations, the drone was
equipped with a set of ray perception sensors which can iden-
tify obstacles as well as measure the distance to them based
on ray casting techniques.

Alternatively, cameras can be used as sensors, however,
this usually requires some kind of image processing which
was out of scope for this project.

3.4 Reward System
The idea of reinforcement learning is to let an agent explore
an environment by itself and, based on the actions taken,
provide it with positive or negative rewards to reinforce certain
behaviours. The total score at the end of an episode is the sum
of all negative and positive rewards, and reflects how well the
agent behaved. Chains of actions that consistently leads to a
high average score will ultimately be prioritized, and actions
that leads to a lower average score will be avoided.

3.4.1 Step Penalty
Typically a time step penalty is used to reinforce the agent to
complete a task in minimum time. In this project a time step

penalty pt , proportional to the maximum number of steps N
in an episode was used. If the time runs out during a training
episode, the sum of the step penalties pt will result in negative
one, according to Equation 7,

pt =−
1
N

(7)

A critical skill for the drone agent was to learn how to
leave the starting platform by moving straight up. To speed
up this learning process, an additional step penalty was added
for each time step on which the drone stays on the platform.
This additional penalty reinforces the drone agent to leave the
platform as soon as possible by earning a higher average score
for doing so.

3.4.2 Checkpoints
One part of the learning goal was that the agent should be able
to solve a task while navigating through an obstacle course.
In the final implementation the task was to collect a randomly
placed checkpoint before landing on the goal platform. To
encourage this behaviour, a positive reward is earned if the
agent collects the checkpoint.

3.4.3 Goal Location
To make sure that the agent learns where to move, a positive
reward is earned when the agent finds the goal platform. Ad-
ditionally the current training episode ends, and consequently,
the step penalty is terminated.

To speed up the learning process, the agent is rewarded
with a bonus score if the checkpoint was collected before
reaching the goal platform. Note that this rule not only reduces
the learning time, but also decreases the chance of learning
a bad pattern. A bad pattern could be that the agent fails to
learn that it should collect the checkpoint and instead takes
the shortest path directly to the goal location for a fast finish
time.

3.4.4 Obstacles
If the agent accidentally fly into a wall or similar, the current
training episode will immediately end with a score of negative
one. This is incorporated to make sure that the agent carefully
avoids crashing into obstacles and loosing control.

If this rule was not implemented, there is a possibility that
the agent learns to take unnecessary risks in order to get a
fast finish time. This would not be tolerable if the goal is to
implement the agent to fly a real-life quad-copter drone.

3.5 Training Acceleration
Aside from accelerating the training process by using curricu-
lum learning, parallel training was utilized. Parallel training
is supported by the library ML-Agents and works by simply
adding multiple identical copies of the environment in the
scene before initiating the training. All agents share the same
policy network meaning that the same amount of training
steps, compared to a single agent in a single environment, can
be achieved in a proportionally faster time. An example of
how this is implemented in Unity is shown in Figure 3.
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3.6 Curriculum Strategy
The curriculum learning strategy was implemented based on
internal difficulty levels. The idea was to increase the diffi-
culty during the training based on the agent’s average score
progress. This translates to: as soon as the agent has learned
to consistently master level one, the environment changes to
level two, and so on.

The environment has a total of six difficulty levels (levels
1-5 is illustrated in Figure 1). Levels 1-3 involves different
spawning areas for the start and end platforms, where the
spawning area as well as the distance between them increase
each level. Additionally, the height of the goal platform is
incremented on level 2 and 3.

In levels 4-5, two vertical walls in the middle of the room
has been introduced with different horizontal gap sizes. On
level six, horizontal walls are added which results in a square
gap. Note that the placement of the gap is randomly placed
for all levels 4-6, where in levels 4-5 the gap is sampled in
one dimension (horizontal), and for level 6 the gap is sampled
in two dimensions (horizontal and vertical).

Figure 1. Top views of the environment illustrating the
different difficulty levels used for curriculum learning. The
left figure shows levels 1-3 where the gray squares represents
spawning areas for the start and end platforms. The other two
figures (middle and right) shows the horizontal size of the
gap in the obstacle wall.

The idea of the difficulty level strategy was to gradually
increase the complexity of the environment to not overwhelm
the agent, yielding in a faster and higher convergence of the
average score.

4. Result
The final result was a policy agent trained based on the meth-
ods described in Section 3, that consistently managed to leave
the start platform, navigate through an obstacle, collect the
checkpoint, and finally land on the goal platform. The total
training time was 15 million steps trained with a curriculum
learning strategy. The hyperparameters and neural network
settings that was used are available in Appendix A.

The environment configured to the final difficulty level
is shown in Figure 2. The screen captions show an agent
controlled quad-copter drone leaving the start platform, navi-
gating through the obstacle and collecting the checkpoint.

The training process was accelerated using 20 parallel
environments. An example of the parallel training, covered in
Section 3.5, is seen in Figure 3.

(a)

(b)

Figure 2. An exhibition of the environment set to difficulty
level 6. The room is divided by a wall with a square gap, 2(a)
shows the drone leaving the starting platform headed towards
the gap, and 2(b) shows the drone navigating towards the
checkpoint after passing through the gap.

Figure 3. An overview of the parallel training by using
multiple copies of the environment. The blue platform is the
starting location, the green platform is the goal location and
the purple sphere is the checkpoint to collect. The
environments were currently set to difficulty level 3.

Theoretically, the maximum possible average score for
an agent is 2. The score is based on how fast an episode is
finished, and whether or not the checkpoint was collected
before reaching the goal platform.

In Figure 4, a graph of the training progress is shown.
Note that up to 2 million steps, difficulty levels 1 to 3 were
traversed automatically based on a threshold value of 1 for
the average episode score. The completion of levels 4, 5, and
6 were manually managed since no suitable threshold value
had been determined. For example, when the training of level
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4 showed a stable convergence, the training was manually
paused, and then resumed on level 5. The difficulty levels are
explained in Section 3.6.

Figure 4. The training progress of an agent using the
curriculum learning strategy. The y-axis represents the
average episode score and the x-axis represents the number of
training steps. At two million steps, difficulty level 3 was
completed. The following curve dips represents the
beginning of level 4, 5, and 6 respectively. The training was
terminated after 15 million steps

To compare the efficiency of utilizing curriculum learning,
training sessions using a static difficulty level was done. In
Figure 5, the blue curve represents an agent trained using
curriculum learning from level 1 to 5, and the red curve rep-
resents an agent trained on level 3 from start to finish. At 2
million training steps and with an average score of 1.8, level 4
was manually initiated for the blue agent, while the red agent
at the same step had an average score of 0.6. At the end of the
graph, both agents had an average score of 1.5 and the blue
agent was completing level 5.

Figure 5. A comparison between two training sessions,
where the blue curve used the curriculum learning strategy,
and the red curve trained on level 3 consistently. Note that at
the first dip on the blue curve, level 4 was manually initiated.

Figure 6 showcases the inconsistency of overcoming im-
portant learning milestones. The curves show the progress of
training two agents with identical parameter settings without
using curriculum learning. Based on the random exploration
aspect of reinforcement learning, the red agent made a break-
through leading to a spike in higher average scores faster than
the blue agent. The milestone in this case was that the agents
learned to land on the goal platform. Both environments used
a static difficulty level of 3.

5. Discussion
The final environment used to train the agent contained a
much less complex obstacle course than what was initially the
ambition, however the result show that it can easily be modi-
fied by incorporating more difficulty levels to the curriculum

Figure 6. A comparison between two different training
sessions without curriculum learning, using identical
parameter settings. The y-axis represents the average episode
score and the x-axis represents the number of training steps.

strategy. For example, the size of the room can be expanded,
more walls (obstacles) could be added, and the task could
be more advanced. A more advanced task would be to have
the agent pick up the checkpoint and drop it off at a certain
location, before moving to the goal platform.

The main reason for constraining the complexity of the
obstacle course was to keep the time needed for training low.
This was necessary for the project to be feasible since the
development of the environment including the reward system,
action system, and the curriculum strategy was very time
consuming. The total time for the final training session was
about 3.5 hours.

Although the curriculum learning was successful, it could
probably better optimized. By looking at Figure 4, it is clear
that the step from difficulty level 5 to 6 (the last curve dip) is
quite dramatic in terms of the drop in score. This might be a
consequence of the fact that the vertical walls are not intro-
duced until the final level, yielding a large skill gap between
level 5 and level 6.

Reinforcement learning assisted with curriculum learning
is a powerful tool for training AI-agents to solve complex
tasks. One of the biggest advantages of reinforcement learning
is that an agent can be retrained to adapt to new problems.
With a carefully designed environment, reward system, and
curriculum strategy, an agent could potentially be trained to
solve a general task, prepared to advance into branches of
more specific problems. If this would be possible, the training
time for adapting the agent to solve new problems could be
considerably reduced.

6. Conclusion
An AI-agent was successfully trained to consistently and
safely navigate a drone through an obstacle course while per-
forming a simple task. The agent learned to solve the task by
interacting with the environment, using reinforcement learn-
ing methods. Specifically, the proximal policy optimization
algorithm was used, and implemented with the game engine
Unity and the library called ML-Agents.

Result show that curriculum learning is a powerful strategy
for optimizing and accelerating the learning process of the
agent. By using a difficulty system containing six levels, the
task started out simple and gradually became more complex,
easing out the steep learning curve.
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Appendices

A Parameters

Hyperparameter Value

Batch size 256
Buffer size 10240
Learning rate 0.0003
β 0.005
ε 0.2
λ 0.95
Epochs 3
Learning rate decay Linear

Table 1. The PPO hyperparameters used in the final training
of the drone agent. The parameter β is the strength of the
entropy regularization (for proper exploration of the
environment), ε influences how far the new policy can
diverge from the old policy, and λ is a regularization
parameter used for calculating the General Advantage
Estimate.

Neural network settings Value

Hidden units 256
Number of hidden layers 2
Vector normalization False
Encoder type Two convolutional layers

Table 2. The PPO neural network settings used in the final
training of the drone agent.
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